Induction of an immune response by oral administration of recombinant botulinum toxin.
نویسندگان
چکیده
A gene encoding the full-size botulinum neurotoxin serotype C was reconstructed in vector pQE-30 and expressed at high levels in Escherichia coli. Three amino acid mutations (H229-->G, E230-->T, and H233-->N) were generated in the zinc-binding motif, resulting in complete detoxification of the modified recombinant holotoxin. The PCR-amplified wild-type light chain of botulinum neurotoxin serotype C was also expressed in E. coli and used as a control in all experiments. Modified recombinant holotoxin and light chain contained a histidine affinity tag at the amino terminus, which was used for detection and purification. Recombinant proteins were purified on nickel affinity resin and analyzed by Western blotting with the anti-histidine tag and anti-neurotoxin C antibodies. The results indicated that the 150-kDa molecule of modified recombinant holotoxin and the 50-kDa recombinant light chain were synthesized without degradation; however, E. coli did not provide for efficient nicking of modified recombinant toxin. Modified recombinant holotoxin was not toxic to mice, had no effect on nerve-evoked muscle twitch in vitro, and was not able to cleave syntaxin in crude synaptosome preparations. The recombinant light chain was also nontoxic in vivo, had no effect on evoked muscle twitch, but was able to cleave syntaxin. Modified recombinant neurotoxin and light chain were administered to animals either orally or subcutaneously. Both oral administration and subcutaneous administration of modified recombinant neurotoxin evoked high levels of serum antibodies and protective immunity. Oral administration of recombinant light chain evoked no systemic response, whereas subcutaneous administration evoked antibody production and immunity.
منابع مشابه
تهیه نانو واکسن نوترکیب نوروتوکسین بوتولینوم تیپ E بر پایه کیتوسان و مقایسه ایمنیزایی آن به دو روش تزریقی و خوراکی در موش سوری
Background and Objectives: Botulism syndrome is caused by one of the seven botulinum neurotoxins. The toxins binding domain have immunogenicity effect and can be used as a recombinant vaccine candidate against botulism disease. Due to the low immunogenicity of recombinant protein , the use of an appropriate vehicle for antigen delivery to target cells is inevitable. The purpose of this study ...
متن کاملImmunogenicity evaluation of rBoNT/E nanovaccine after mucosal administration
Objective(s): The Botulism syndrome is caused by types A to G of botulinum neurotoxins. The binding domains of these neurotoxins are immunogenic and considered as appropriate candidate vaccines. Due to the low immunogenicity of recombinant vaccines, there have been many studies on the use of biocompatible carriers such as chitosan nanoparticles for the delivery of these vaccines. The aim of thi...
متن کاملSubcutaneous administration of a fusion protein composed of pertussis toxin and filamentous hemagglutinin from Bordetella pertussis induces mucosal and systemic immune responses
Objective(s): After decades of containment, pertussis disease, caused by Bordetella pertussis seems to be re-emerging and still remains a major cause of reported vaccine-preventable deaths worldwide. The current licensed whole-cell vaccines display reactogenicity while acellular vaccines are expensive and do not induce Th1-type immune responses that are required for optimum protection against t...
متن کاملThe effect of pH on recombinant C-terminal domain of Botulinum Neurotoxin type E (rBoNT/E-HCC)
Recombinant proteins are tending to be the most favorable vaccine-candidates against botulism. Recombinant Carboxy-terminal of botulinum neurotoxin serotype E (rBoNT/E-HCC) has been introduced as an efficient vaccine against botulism type E. In this report, we made an effort to investigate the effect of different pH on protein structure to assess if rBoNT/E-HCC could be used as a vaccine for or...
متن کاملبررسی ایمنیزایی نانوذرات کیتوسان حاوی پروتئین نوترکیب ناحیه اتصالدهنده نوروتوکسین بوتولینوم تیپ E در موش
Abstract Background and purpose: Clostridium botulinum neurotoxins are the most potent toxins that cause the life-threatening botulism syndrome in humans and animals. Researches have shown that the binding domain of the botulinum neurotoxin type E has a high immunogenicity effect that could be used as an efficient recombinant vaccine. The recombinant vaccines are not potent enough to stimulate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 65 11 شماره
صفحات -
تاریخ انتشار 1997